πŸ₯‘
Algorithms
  • The Algorithms Interest Group
  • The C++ Programming Language
    • GCC Compiler
    • Fundamental
    • Integrated Environment
    • STL Containers
  • Fundamental Algorithms and Data Structures
    • Greedy
    • Greedy (2022)
    • Binary Search
    • Recursion
    • Linear Structure
    • Generic Tree
  • Graph Theory
    • Generic Graph
    • Minimum Spanning Tree
    • Depth First Search
    • Breadth First Search
    • Shortest Path
    • Network Flow
    • Bipartite Graph
    • Topological Sort
    • Automaton
  • Dynamic Programming
    • Basic Dynamic Programming
Powered by GitBook
On this page

Was this helpful?

  1. Graph Theory

Depth First Search

PreviousMinimum Spanning TreeNextBreadth First Search

Last updated 3 years ago

Was this helpful?

Depth First Search (abbr. DFS) (ζ·±εΊ¦δΌ˜ε…ˆζœη΄’) is an algorithm for graph or tree traversal or searching a specific node in a tree. It adopts , so you should understand recursion for a better learning of DFS. For a simple example, there is code snippet of DFS.

Consider the maze is the following:

#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.
#. .#. . . . . . . .#. . . . . . . .#. .#.
#. .#. .#.#.#.#.#. .#.#.#. .#.#.#. .#. .#.
#. . . .#. . . .#. .#. . . .#. .#. . . .#.
#.#.#.#.#.#.#. .#. .#. .#.#.#. .#.#.#. .#.
#. . . . . . . .#. .#. . . .#. . . . . .#.
#. .#.#.#.#.#.#.#. .#. .#. .#.#.#. .#.#.#.
#. . . . . . . . . .#. .#. . . .#. . . .#.
#. .#.#.#.#.#.#.#.#.#.#.#.#.#. .#.#.#. .#.
#. .#. . . . . . . .#. . . . . .#. .#. .#.
#. .#.#.#. .#.#.#. .#. .#.#.#.#.#. .#. .#.
#. . . .#. . . .#. . . .#. . . .#. .#. .#.
#.#.#. .#.#.#. .#.#.#.#.#. .#. .#. .#. .#.
#. .#. . . . . .#. . . . . .#. .#. .#. .#.
#. .#.#.#.#.#.#.#.#.#.#.#. .#. .#. .#. .#.
#. . . . . .#. . . . . .#. .#. . . .#. .#.
#. .#.#.#.#.#. .#. .#. .#. .#. .#.#.#. .#.
#. . . . . .#. .#. .#. . . .#. .#. . . .#.
#. .#.#.#. .#. .#. .#.#.#.#.#.#.#. .#.#.#.
#. . . .#. . . .#. . . . . . . . . . . .#.
#.#.#.#.X.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.

To let computer program walk through the maze, we can adopt DFS in the problem solving program. Here is the pseudo code.

def dfs(now_position):
    visited.append(now_position)
    if now_position == exit_position:
    	return True
    # Try to step on adjacent position
    for dir in "←↓↑→":
        next_position = now_position.step(dir)
        # The case when next position can be stepped on
        if not next_position is "#" and next_position not in visited:
            dfs(next_position)

Please try to solve the previous maze problem by referencing pseudo code (Or any type of Algorithms you like or you have created). And mark the path using *.

maze = '''#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.
          #.#.#. . . . . . . .#. . . . . . . .#. .#.
          #. .#. .#.#.#.#.#. .#.#.#. .#.#.#. .#. .#.
          #. . . .#. . . .#. .#. . . .#. .#. . . .#.
          #.#.#.#.#.#.#. .#. .#. .#.#.#. .#.#.#. .#.
          #. . . . . . . .#. .#. . . .#. . . . . .#.
          #. .#.#.#.#.#.#.#. .#. .#. .#.#.#. .#.#.#.
          #. . . . . . . . . .#. .#. . . .#. . . .#.
          #. .#.#.#.#.#.#.#.#.#.#.#.#.#. .#.#.#. .#.
          #. .#. . . . . . . .#. . . . . .#. .#. .#.
          #. .#.#.#. .#.#.#. .#. .#.#.#.#.#. .#. .#.
          #. . . .#. . . .#. . . .#. . . .#. .#. .#.
          #.#.#. .#.#.#. .#.#.#.#.#. .#. .#. .#. .#.
          #. .#. . . . . .#. . . . . .#. .#. .#. .#.
          #. .#.#.#.#.#.#.#.#.#.#.#. .#. .#. .#. .#.
          #. . . . . .#. . . . . .#. .#. . . .#. .#.
          #. .#.#.#.#.#. .#. .#. .#. .#. .#.#.#. .#.
          #. . . . . .#. .#. .#. . . .#. .#. . . .#.
          #. .#.#.#. .#. .#. .#.#.#.#.#.#.#. .#.#.#.
          #. . . .#. . . .#. . . . . . . . . . .#.#.
          #.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.'''

def maze_parser(maze):
    res = []
    for line in maze.strip().split('\n'):
        line = line.strip().split('.')
        res.append(line)
    return res

if __name__ == '__main__':
    maze = maze_parser(maze)
    start = [1, 1]
    end = [19, 19]

Using the above parser, the maze can be processed into an 2-D matrix (or array). you can access any (x, y) by invoking maze[x][y].

Please try to understand the psedo code first. Solution changes several codes due to specific problem solving. path list is recorded in each dfs() function's parameter list.

Why the path list should be recorded in the dfs() parameter list but not as instance variable?

maze = '''#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.
          #.#.#. . . . . . . .#. . . . . . . .#. .#.
          #. .#. .#.#.#.#.#. .#.#.#. .#.#.#. .#. .#.
          #. . . .#. . . .#. .#. . . .#. .#. . . .#.
          #.#.#.#.#.#.#. .#. .#. .#.#.#. .#.#.#. .#.
          #. . . . . . . .#. .#. . . .#. . . . . .#.
          #. .#.#.#.#.#.#.#. .#. .#. .#.#.#. .#.#.#.
          #. . . . . . . . . .#. .#. . . .#. . . .#.
          #. .#.#.#.#.#.#.#.#.#.#.#.#.#. .#.#.#. .#.
          #. .#. . . . . . . .#. . . . . .#. .#. .#.
          #. .#.#.#. .#.#.#. .#. .#.#.#.#.#. .#. .#.
          #. . . .#. . . .#. . . .#. . . .#. .#. .#.
          #.#.#. .#.#.#. .#.#.#.#.#. .#. .#. .#. .#.
          #. .#. . . . . .#. . . . . .#. .#. .#. .#.
          #. .#.#.#.#.#.#.#.#.#.#.#. .#. .#. .#. .#.
          #. . . . . .#. . . . . .#. .#. . . .#. .#.
          #. .#.#.#.#.#. .#. .#. .#. .#. .#.#.#. .#.
          #. . . . . .#. .#. .#. . . .#. .#. . . .#.
          #. .#.#.#. .#. .#. .#.#.#.#.#.#.#. .#.#.#.
          #. . . .#. . . .#. . . . . . . . . . .#.#.
          #.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.'''

def maze_parser(maze):
    res = []
    for line in maze.strip().split('\n'):
        line = line.strip().split('.')
        res.append(line)
    return res

class Search:
    def __init__(self, maze, start, end):
        self.visited = []
        self.maze = maze
        self.start = start
        self.end = end
        self.size = end[0] + 2
        self.move_dir = [[-1, 0], [0, -1], [1, 0], [0, 1]]
        self.path = None
        self.solve()

    def move(self, _from, towards):
        return [_from[0]+towards[0], _from[1]+towards[1]]

    def draw_path(self):
        for step in self.path:
            self.maze[step[0]][step[1]] = '*'

    def print_maze(self):
        for i in range(self.size):
            for j in range(self.size):
                print(self.maze[i][j], end=' ')
            print()

    def solve(self):
        self.dfs(self.start, path=[])
        self.path = [self.path[i:i+2] for i in range(0, len(self.path), 2)]
        self.draw_path()
        self.print_maze()

    def dfs(self, now_position, path):
        self.visited.append(now_position)
        if now_position == self.end:
            self.path = path
            return True
        for _dir in self.move_dir:
            next_position = self.move(_from=now_position, towards=_dir)
            x = next_position[0]; y = next_position[1]
            if next_position not in self.visited and maze[x][y] != '#':
                self.dfs(next_position, path+now_position)
        return False


if __name__ == '__main__':
    maze = maze_parser(maze)
    start = [1, 1]
    end = [19, 19]
    search = Search(maze, start, end)

LC200 Number of Islands

Given an m x n 2D binary grid grid which represents a map of '1's (land) and '0's (water), return the number of islands.

An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example 1:

Input: grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
Output: 1

Example 2:

Input: grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
Output: 3

Constraints:

  • m == grid.length

  • n == grid[i].length

  • 1 <= m, n <= 300

  • grid[i][j] is '0' or '1'.

Sol.

class Solution:
    
    def dfs(self, grid, x, y):
        move_dir = [[-1, 0], [0, 1], [0, -1], [1, 0]]
        grid[x][y] = '0'
        for _dir in move_dir:
            next_x = x + _dir[0]
            next_y = y + _dir[1]
            if next_x >= 0 and next_y >= 0 and next_x < len(grid) and next_y < len(grid[0]):
                if grid[next_x][next_y] == '1':
                    self.dfs(grid, next_x, next_y)
        
    
    def numIslands(self, grid: List[List[str]]) -> int:
        res = 0
        for x in range(len(grid)):
            for y in range(len(grid[0])):
                if grid[x][y] == '1':
                    self.dfs(grid, x, y)
                    res += 1
        return res

Here is the code to help your program reading and storing the maze.

Sol.

recursion
[src code]
[src code]